Building Information Modeling (BIM) is the process of generating and managing building data during its life cycle. Typically it uses three-dimensional, real-time, dynamic building modeling software to increase productivity in building design and construction. The process produces the Building Information Model (also abbreviated BIM), which encompasses building geometry, spatial relationships, geographic information, and quantities and properties of building components.
Building information modeling covers geometry, spatial relationships, geographic information, quantities and properties of building components (for example manufacturers' details). BIM can be used to demonstrate the entire building life cycle including the processes of construction and facility operation. Quantities and shared properties of materials can easily be extracted. Scopes of work can be isolated and defined. Systems, assemblies, and sequences are able to be shown in a relative scale with the entire facility or group of facilities.
BIM is a process which goes far beyond switching to a new software. It requires changes to the definition of traditional architectural phases and more data sharing than most architects and engineers are used to.
BIM is able to achieve such improvements by modeling representations of the actual parts and pieces being used to build a building. This is a substantial shift from the traditional computer aided drafting method of drawing with vector file based lines that combine to represent objects.
The interoperability requirements of construction documents include the drawings, procurement details, environmental conditions, submittal processes and other specifications for building quality. It is anticipated by proponents that BIM can be utilized to bridge the information loss associated with handing a project from design team, to construction team and to building owner/operator, by allowing each group to add to and reference back to all information they acquire during their period of contribution the BIM model. For example, a building owner may find evidence of a leak in his building. Rather than exploring the physical building, he may turn to his BIM and see that a water valve is located in the suspect location. He could also have in the model the specific valve size, manufacturer, part number, and any other information ever researched in the past, pending adequate computing power.
There have been attempts at creating a BIM for older, pre-existing facilities. They generally reference key metrics such as the Facility Condition Index, or FCI. The validity of these models will need to be monitored over time, because trying to model a building constructed in, say 1927, requires numerous assumptions about design standards, building codes, construction methods, materials, etc., and therefore is far more complex than building a BIM at time of initial design.
The American Institute of Architects has further defined BIM as "a model-based technology linked with a database of project information", and this reflects the general reliance on database technology as the foundation. In the future, structured text documents such as specifications may be able to be searched and linked to regional, national, and international standards.
BIM is a process which goes far beyond switching to a new software. It requires changes to the definition of traditional architectural phases and more data sharing than most architects and engineers are used to.
BIM is able to achieve such improvements by modeling representations of the actual parts and pieces being used to build a building. This is a substantial shift from the traditional computer aided drafting method of drawing with vector file based lines that combine to represent objects.
The interoperability requirements of construction documents include the drawings, procurement details, environmental conditions, submittal processes and other specifications for building quality. It is anticipated by proponents that BIM can be utilized to bridge the information loss associated with handing a project from design team, to construction team and to building owner/operator, by allowing each group to add to and reference back to all information they acquire during their period of contribution the BIM model. For example, a building owner may find evidence of a leak in his building. Rather than exploring the physical building, he may turn to his BIM and see that a water valve is located in the suspect location. He could also have in the model the specific valve size, manufacturer, part number, and any other information ever researched in the past, pending adequate computing power.
There have been attempts at creating a BIM for older, pre-existing facilities. They generally reference key metrics such as the Facility Condition Index, or FCI. The validity of these models will need to be monitored over time, because trying to model a building constructed in, say 1927, requires numerous assumptions about design standards, building codes, construction methods, materials, etc., and therefore is far more complex than building a BIM at time of initial design.
The American Institute of Architects has further defined BIM as "a model-based technology linked with a database of project information", and this reflects the general reliance on database technology as the foundation. In the future, structured text documents such as specifications may be able to be searched and linked to regional, national, and international standards.